
正標数の Berkovich幾何
東京科学大学　理学院　数学系数学コース

山田 雄斗 (Yuto YAMADA) ∗

概要
Banach 環による幾何学として期待される Berkovich 幾何について定義を確認して, 有限体上
の合同ゼータ関数との関連についても述べる.

1 導入
合同ゼータ関数の定義とトレースの関係について確認する.有限体 Fq (q = ps)上の代数多様体 X

に対して,代数閉包 k := Fq への底変換を Xk とおく. X の合同ゼータ関数とは,以下で定まる関数
であった:

Z(X, t) := exp

( ∞∑
n=0

#(Xk(Fqn))

n
tn

)
.

一方で, X が滑らかな射影多様体であるときは Grothendieck-Lefshetzの跡公式 ([SGA5])によって,

以下のような計算があった:

#(Xk(Fqn)) =

∞∑
i=0

Tr((Fn
X)∗|Hi

et(Xk,Qℓ)).

ただし, Hi
et(Xk,Qℓ)は Xk の ℓ進 étaleコホモロジー (ℓ 6= p)であり, FX は Xk の Frobenius射で

ある.この表示は ℓ進 étaleコホモロジーの発展の中でも,とくにWeil予想 ([Wei49])の進展に大き
く寄与したが,これ以上は立ち入らない.

2 Berkovichモチーフ
ここでは, [Sch24]に沿って, Berkovichモチーフの理論を概観して,いくつかの例をみる.

定義 2.1 ([Sch24, Definition 2.1,2 & 10], Banach環/体). 環 Rが Banachであるとは, Rが写像
| − |R : R→ R≥0 であって,以下の条件をみたすものが存在するということである:

1. |0|R = 0,かつ, | − 1|R ≤ 1である.

2. 任意の元 a, b ∈ Rに対して, |ab|R ≤ |a|R|b|R が成り立つ.

3. 任意の元 a, b ∈ Rに対して, |a + b|R ≤ |a|R + |b|R が成り立つ.
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4. Rは, | − |R によって定まる位相に関して完備である.

また, Banach環 (K, | − |K)が Banach体であるとは, K が体であり,任意の元 a, b ∈ K に対して
|ab|K = |a|K |b|K が成り立つことをいう.

更に, ノルム保存写像 (つまり, 任意の元 a ∈ R に対して, |f(a)|S ≤ |a|R を満たす環準同型
f : R→ S を射とする Banach環の圏を Banとおく. ♦

注意 2.2 ((非)archimedes的Banach体). Gelfand–Mazurの定理 ([Gel41], [Maz38])より, |2|K > 1

を満たす Banach 体 (K, | − |K)(つまり, archimedes 的 Banach 体) は, R あるいは C に通常の
(Euclid) ノルム | − | の冪 | − |α(0 < α ≤ 1) を入れたものと同型である. 一方, 冪乗的ノルム (つま
り,任意の元 a ∈ R と任意の整数 nに対して |an|R = |a|nR が成り立つノルム)をもつ Banach環 R

が非 archimedes 的であるとは, 超距離三角不等式を満たすこと (同値な条件として |2|R < 1 が成
り立つ)ことをいう ([Sch24, Definition 2.5 & Proposition 2.6] 参照). ♦

例 2.3 (自明ノルム). 任意の環は 0を 0 ∈ Rに送り,それ以外は 1 ∈ Rに送るようなノルム (と離散
位相)で以て, Banach環と見做すことができる. ♦

定義 2.4 ([Sch24, Definition 2.13], Berkovichスペクトラム). Banach環 Rの Berkovichスペク
トルM(R)とは,以下の条件を満たす写像 ‖ − ‖ : R → R≥0 全体のなす

∏
a∈R[0, |a|R]の閉部分空

間である:

1. ‖0‖ = 0,かつ, ‖1‖ = 1である.

2. 任意の元 a ∈ Rに対して, ‖a‖ ≤ |a|R が成り立つ.

3. 任意の元 a, b ∈ Rに対して, ‖ab‖ = ‖a‖R‖b‖R が成り立つ.

4. 任意の元 a, b ∈ Rに対して, ‖a + b‖ ≤ ‖a‖+ ‖b‖が成り立つ.

任意の点 x ∈M(R)(対応するノルムを ‖ − ‖x と書く)に対して, K(x)を Banach環 (R̂, ‖ − ‖x)(た
だし, R̂は R/ ker(‖ − ‖x)の ‖ − ‖x による完備化)の分数体の完備化と定める (K(x)は Banach体
となることに注意する). ♦

定義 2.5 ((強)完全不連結性). Banach環 (R, | − |R)に対して,以下を定める:

1. ([Sch24, Definition 2.17]) 任意の点 x ∈ M(R)において対応する Banach体 K(x)が非離散
的であるとき, Rは解析的であるという.

2. ([Sch24, Definition 2.20 & Proposition 2.21]) 任意の元 a ∈ Rに対して,

|a|R = sup{‖a‖x | x ∈M(R)} = lim[n→∞]|an|1/nR

が成り立つとき, Rは一様である (同値な条件として, | − |R が冪乗的である)という.

3. ([Sch24, Definition 3.10]) Rが解析的,かつ,一様であり,またM(R)が副有限であるとき, R

は完全不連結であるという.

4. ([Sch24, Definition 3.10]) R が完全不連結であり, 任意の点 x ∈ M(R) に対して, 対応する
Banach体K(x)が代数的閉体であるとき, Rは強完全不連結 であるという.

♦



例 2.6 ([Sch24, Subsection 2.4], 非 archimede的単位円板). 代数閉となる非 archimedes的 Banach

体 C に対する“単位円板”であるM(C〈T 〉1)の具体的な点を列挙する (ただし, C〈T 〉1 は |T | ≤ 1

となる変数 T を付加して得られる一様 Banach C 代数を表す). Bruhat-Tits 樹木をみることで,

M(C〈T 〉1)は,以下のような表示ももつ:

{(xa)a∈OC
| xa ≤ max{xb, |a− b|C}, |a− b|C ≤ max{a, b} for all a, b ∈ OC}.

これらの点は,以下のように大別できる:

1. xa = 0となる aが存在するとき, T 7−→ aを考えることで, K(x)は C 自身となる.

2. 最小の xa に対して, xa = |t|C となる t ∈ C が存在するとき, K(x)は C(T )の xに関する完
備化となる.これは,付値群は C と同じ付値群であり,剰余体は C の剰余体の純超越拡大体で
ある.

3. 最小の xa に対して, xa 6∈ |C|となるとき, K(x)は C(T )の xに関する完備化となる.これは,

付値群は |C×| × xZ
a であり,剰余体は C の剰余体である.ただし, |C| = R≥0 であるときは,こ

のような点が生じないことに注意する.

4. 最小値が存在しないとき, 極小値への極限 xa1 , xa2 , . . .を取ることで, K(x)は K(x)は C(T )

の xに関する完備化となる.これは,付値群は C と同じ付値群であり,剰余体は C の剰余体で
ある.ただし, C が球的完備である (つまり,任意の K の減少列の共通部分が非空である)とき
は,このような点が生じない事に注意する.

「モチーフ」を解析するうえで有用な位相として,「arc位相」を定義する.

定義 2.7 (arc景). 以下の概念を定める:

1. ([Sch24, Definition 3.1]) Banにおける射の族 {Si → R}i∈I が arc被覆であるとは,有限部分
集合 J ⊂ I が存在して,誘導される写像⊔

j∈J

M(Sj)→M(R)

が全射となることをいう.

2. ([Sch24, Proposition 3.3]) arc被覆により与えられる (有限な)Grothendieck位相を入れた景
(Banop, arc)を arc景という.

3. Banach環 Rに対して, Marc(R)を米田埋込 S 7−→ HomBan(R,S)の arc層化として定める.

4. 値を Aniにとる (Banop, arc)上の層 (Shvarc(Banop,Ani)の対象)を arcスタック という.ま
た,ある (小さい)余極限 colim(Marc(R))で表現される arcスタックを小であるという.

♦

例 2.8 ([Sch24, Example 3.6 & Proposition 3.11], Stone-Čech 被覆). Banach 環 R に対して,

Gelfand変換 R →
∏Ban

x∈M(R) K(x) =: S をみる. M(S)は (集合としての)M(R)の Stone-Čechコ
ンパクト化と同相である.更に,標準的な射M(S)→M(R)は arc被覆となっていて,ある種の圏論
的な操作である Stone-Čechコンパクト化が Berkovich空間の言葉で表現できている. ♦

まず, arc層に関するいくつかの概念を定義する.



定義 2.9 (有限/球不変/(効果的)モチヴィック層). 小 arcスタックX に対して,以下の概念と∞圏
を定める:

1. ([Sch24, Definition 4.10 & Proposition 4.12]) X 上の有限層のなす∞圏 Dfin(X)を,有限積
およびフィルター余極限と可換な関手のなす Fun(TDst

/X ,D(Z))の充満部分∞圏として定め
る.ただし, TDst とは強完全不連結な Banach環のなす Banの充満部分圏である.

2. ([Sch24, Definition 5.1]) arc層 F ∈ D(Xarc)が球不変であるとは, X 上の任意の Banach環
Rに対して, Rと R〈T 〉1 における値が一致することをいう.ただし, D(Xarc)とは,値を D(Z)

にとる (Banop
/X , arc)上の層であり,その対象を arc層という.

3. ([Sch24, Definition 5.2 & Proposition 5.8]) X 上の効果的モチヴィック層 の∞圏 Deff
mot(X)

を, 球不変な層のなす Dfin(X) の充満部分 ∞ 圏として定める. 同値な定義として, 自己関手
L : Dfin(X) 3 K 7−→ (R 7−→ colimn∈∆opK(R〈∆n〉)) ∈ Dfin(X)の本質的像として与えられ
る.ただし, R〈∆n〉は, n個の変数を付加した Banach R代数 R〈T1, . . . , Tn〉1,...,1 を表す.

4. ([Sch24, Definition 5.18]) Tate捻り Z(1)を, arc層 (Zmot[Gm]/Zmot[∗])[−1]によって定め
る.ただし, Zmot[−]は [Sch24, Proposition 5.12 & Theorem 6.1]で論じられている自由モチ
ヴィック層を表す.非 archimedes的な状況で議論する場合,これは arc層 (Gm/(1+O<1))[−1]

(O<1 は層 R 7−→ R<1 を表す:[Sch24, Definition 5.15 & Proposition 5.17]) と同値であるこ
とに注意する.また, C上で議論をするときには Zと一致する.

5. ([Sch24, Definition 9.1]) モチヴィック層の∞ 圏 Dmot(X) を Deff
mot(X)[Z(1)⊗−1] として定

める.任意の負の整数 n ∈ Z<0 に対して, Z(−n)はモチヴィック層の中で (Z(1)⊗−1)⊗(−n) と
して自然に定義される.

♦

例 2.10 (Banach C代数). Gelfand対応 ([Gel41])により, Banach C代数上の arc景と,有限族に
よる全射による Grothendieck 位相を備えたコンパクト Hausdorff 空間の景は, それらの∞ トポス
が一致する.また [Sch24, Theorem 4.14]により,任意の Banach C代数 Rであって, M(R)が距離
付け可能であるものに対して,次の∞圏の同値が存在する: D(M(R)) ' Dfin(Marc(R)). ♦

例 2.11 (幾何学的点). K が代数的閉体であるとき, Dmot(K)には以下のようである:

1. 例 2.10と同様に, K = Cのとき Dmot(K) ' D(Z)である.

2. ([Sch24, Proposition 10.1]) K が非離散的混標数のとき, Dmot(K)はコンパクト生成であり,

単位対象はコンパクトで,コンパクト対象は双対化可能である.

3. ([Sch24, Proposition 10.1]) K が非離散的等標数のときも, Dmot(K) はコンパクト生成で
あり, 単位対象はコンパクトで, コンパクト対象は双対化可能である. また, 剰余体 k の分裂
k → K を固定すると,以下のコンパクト対象による系を生成系として取ることができる:

{Zmot[XK ](−j) | X は k 上の滑らかな射影的代数多様体であり, j は正整数である.}.

4. ([Sch24, Theorem 11.1]) K が離散的であるとき, Dmot(K)は,以下の双対化可能な対象によ
る系を生成系として取ることができる:

{Zmot[X](−j) | X は k 上の滑らかな射影的代数多様体であり, j は整数である.}.



♦

注意 2.12 (ℓ 進実現). 例 2.11 を用いて, 関心のある k = Fps(有限体 Fps の代数閉包) をとる
と, [Sch24, Theorem 11.1] により, HomDmot(k)(Zmot[X](−j),Z) は古典的かつ具体的に記述で
きる: p とは互いに素な指数に関する副有限完備化の後には RΓ(Xét, Ẑ(p)(j)) と同型になる. た
だし, Ẑ(p) は lim←−p∤n(Z/nZ) を表す. とくに, j = 0 に対して, 素数 ℓ 6= p に関する副有限完備
化の後に, ⊗Qℓ を施すことで, 古典的な ℓ 進コホモロジー RΓ(Xét,Qℓ) を得る. この ℓ 進実現を
Φℓ : Dmot(k)→ D(Spec(k)ét,Qℓ)を得る. ♦

3 圏論的トレース
この節では, [CC, Lecture XIV & XV] や [HSS17, Section 2 & 3] に従って,圏論的トレースを概

説する.

記号 3.1. 表示可能な対称モノイダル安定∞圏 C を固定する. M を,単位対象 1をもつ (∞, 2)圏
ModC(PrL)とおく. ♦

定義 3.2 (双対化可能対象). X を C 上の線型∞圏 (つまり, X ∈M)とする. X が双対化可能であ
るとは, M 上の対象X ′ とM 上の射 coevX : 1→ X ′ ⊗X, evX : X ⊗X ′ → 1であって,以下の合成
がともに恒等射と一致するということである:

X
id⊗coevX−−−−−−→ X ⊗X ′ ⊗X

evX⊗id−−−−−→ X, X ′ coevX⊗id−−−−−−→ X ′ ⊗X ⊗X ′ id⊗evX−−−−−→ X ′.

X ′ を (X の)双対といい, X∨ とも表す. ♦

例 3.3 (双対可能性). 例 2.3 より, 体 k 上の代数多様体 X は小 arc スタック Xarc と見做すこ
とができる. また, モチヴィック層 Dmot(Xarc) は Dmot(k) 上双対化可能である. というのも, 外
部テンソル積 Dmot(Xarc) ⊗Dmot(k) Dmot(Xarc) → Dmot(Xarc ×k Xarc) が圏同値である (これは
[CC, Lemma 14.15]の形式的な議論より従う)ので, [Kes25, Proposition 3.15]より,Dmot(Xarc)は
Dmot(k)上自己双対であることが従うからである.ただし,ここでは, [Sch24, Theorem 9.2]を用いた
三つ組 (E,E, isom)(ただし, E は有限コホモロジー次元 ([Sch24, Definition 4.17]) を表す) による
6-functor formalism([HM24]参照)などで議論されている豊富な理論を用いているが,ここでは立ち
入らない. ♦

定義 3.4 (トレース関手). M の双対化可能対象 X ∈ M をとる.自己準同型 f : X → X に対して,

その トレース関手 tr(f |X)を, M における 1の自己準同型として

1
coevX−−−−→ X ⊗X∨ f⊗id−−−→ X ⊗X∨ ' X∨ ⊗X

evX−−→ 1

と定義する.この構成により,関手 tr(−|X) : EndM (X)→ EndM (1) ' C が得られる.この構成は対
象に関しても関手的である ([HSS17, Definition 2.2]も参照). ♦

注意 3.5 (tr(−|−)の性質). トレース関手は以下の性質を満たす:



1. 任意の双対化可能対象 X,Y ∈M と自己準同型 f : X → X, g : Y → Y に対して,

tr(f ⊗ g|X ⊗ Y ) ' tr(f |X)⊗ tr(g|Y )

が成り立つ.

2. 任意の双対化可能対象 X,Y ∈M および射 f : X → Y, g : Y → X に対して,

tr(gf |X) ' tr(fg|Y )

が成り立つ.

♦

注意 3.6 (#f の形式的議論). C の自己準同型 f を一つとる.任意の双対化可能対象 X ∈M に対し
て, fX を f の底変換として得られる自己準同型とする. X の自己射 F を取り,その右随伴関手を G

とおくと,以下のような射が存在する:

tr(f |F ) : tr(fX |X)→ tr(fXGF |X) ' tr(FfXG|Y )→ tr(fY FG|Y )→ tr(fY |Y ).

ただし,最初と最後の矢は随伴から誘導され,中間の同型は注意 3.5(2)から従い, 3番目の矢は自然変
換 FfX ⇒ fY Gから誘導される ([CC, Lecture XV]の議論も参照).例として Y = C の場合を考え
る. X の任意の対象 P に対して, −⊗C P : C → X という関手と,その右随伴 HomC(P,−)を得る.

上記の議論から, tr(f |C)→ tr(fX |X)という射が定まる.

最後に, #f,X(P ) ∈ π0(tr(f |C))を, 1 ∈ π0(tr(f |C))の像として π0(tr(f |C))→ π0(tr(fX |X))を
経由して定める.この構成は関手的であり,写像

#f,X : K0(X)→ π0(tr(fX |X))

を与える.[CC, Proposition 15.1]における抽象的議論の類似から,この写像は“加法的”である. ♦

4 主定理
今までの準備の下で, [Kah24, Subsection 2.C] の類似を行う.具体的には,有限体 Fq (q = ps)の

代数閉包を k として, 注意 3.6 の f を k の Frobenius 射, C を Dmot(k), X を射影的かつ滑らかな
Fq 上の多様体X に対する Dmot((Xk)arc)とする (例 3.3).このとき, [CC, Proposition 15.4]と同様
な形式的な議論により,以下の可換図式が存在することに注意する:

K0(Dmot((Xk)arc))
#F,X //

K0(π∗)

��

π0(tr(fX |X))

π0(tr(F |π∗))

��
K0(Dmot(k))

#F

// π0(tr(f |k)).

ただし,適当に記号は省略しており,構造から誘導される射 Xk → Spec(k)を π とおく.



定義 4.1 (Berkovich 合同ゼータ関数). 任意の正整数 n ∈ N+ に対して, #n(X) := (Φℓ ◦
π0(tr(F |π∗)) ◦ #F,X)(1X) とおく (ただし, 1X は Dmot((Xk)arc) の単位対象である). この記号
の下で,

Z̃(X, t) := exp

( ∞∑
n=0

#n(X)

n
tn

)

とおく.ここで, ℓ進 étaleコホモロジーの計算により,任意の正整数 n ∈ N+ に対して, #n(X) ∈ C
であることに注意する. ♦

注意 2.12 と Grothendieck-Lefshetz の跡公式 ([SGA5]) を組み合わせることで, 以下の主定理を
得る.

定理 4.2 (古典的定義との比較). 任意の正整数 n ∈ N+ に対して, #n(X) = #(Xk(Fqn))である.と
くに,関数として Z̃(X, t) = Z(X, t)である.
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